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SUBSONIC LAMB WAVES IN ANISOTROPIC LAYERSt 
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Moscow 
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A six-dimensional complex formulism is developed for analysing Lamb waves propagating at subsonic velocity in anisotropic 
layers. An example of an elastic layer made of a material with cubic symmetry and with homogeneous boundary conditions is 
presented in which some of the Lamb waves, that propagate in the directions of elastic symmetry, are not present at certain 
values of the phase velocity. @ 2001 Elsevier Science Ltd. All rights reserved. 

Beginning with Lamb's paper [1], in which the basic equations for describing the propagation of elastic waves in 
an isotropic layer were obtained, it has been assumed in all subsequent investigations of harmonic waves with an 
amplitude varying throughout the thickness of a layer that the wave consists of certain partial waves (PWs) which 
have the form 

Uk(X ) = mkeirCkx.v e/V(n.x- ct) (0.1) 

where Uk is the displacement field due to the k-th PW, m~ is the vector amplitude which, in the general case, is 
complex and is determined from the Christoffel equation, Yk is a root of the Christoffel equation, r is the wave 
number, v is the vector of a unit normal to the middle surface of the layer, n is the vector of the wave normal which 
lies in the middle plane and specifies the direction of propagation of the wave front and c is the phase velocity. 
For a Lamb wave to exist, it is necessary that all of the PWs constituting the wave have one and the same wave 
number and the same phase velocity. 

Representation (0.1) for a PW has been used, in addition to Lamb waves, for Rayleigh waves [2] and Stoneley 
waves [3]. The latter are waves which propagate along a plane boundary between two different elastic half-spaces. 
In some investigations, such as [4, 5], for example, which are concerned with analysing Lamb waves in isotropic 
layers, the solution was constructed in complex Papkovich - Neuber potentials and the potentials were chosen in 
a form which ensured that representation (0.1) was satisfied. Representation (0.1) has also been used (see [6-10], 
for example) in the case of anisotropic layers for PWs which constitute a Lamb wave. 

It is shown below that, in the case of Lamb waves which propagate at subsonic velocity in anisotropic 
layers (the phase velocity of a Lamb wave does not exceed the minimum velocity of a body wave propagating in 
the same direction), representation (0.1) needs correcting as, in certain cases, depending on the form of the 
anisotropy and the relations between the components of the elasticity tensor and the phase velocity, a Lamb wave 
can consist of a smaller number of PWs than was assumed in approaches dating back to Lamb's time. A proof of 
the existence of forbidden directions and velocities at which a Lamb wave cannot propagate serves as a result of 
this. 

1. B A S I C  R E L A T I O N S  

The  equa t ions  o f  mo t ion  of  an an i so t rop ic  m e d i u m  can be  wr i t t en  in the  fo rm 

A(~ X, ~ , )u  - div x C . . V x u  - p i i  = 0  (1.1) 

whe re  p is the  densi ty  o f  the  m e d i u m  and C is a t e t r ava len t  elast ici ty vector .  I t  is a s sumed  tha t  this 
t enso r  is pos i t ive  def ini te  

(B- .C . .B) -=  5". BoCq'~"Bm, >0,  VB (1.2) 
i. j, m, n Besym( R3®R 3 ), B#O 
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Substituting the expression for a partial wave (0.1) into the equation of motion we obtain Christoffel's 
equation 

((~',v + n). C. (n + ~',v) - pc21) • m,  = 0 (1.3) 

where I is the identity matrix. Equation (1.3) can be written in the equivalent form 

det((~,kv + n). C. (n + ~ ' , v ) -  pc2I) = 0 (1.4) 

Christoffel's equation in the form (1.4) can be considered as a polynomial equation of the sixth degree 
in "/k. Since the coefficients of polynomial (1.4) are real, its complex roots occur in the set of all roots 
as complex conjugate pairs. 

It can be shown (see [11], for example) that Eq. (1.4) does not have real roots if the phase velocity 
is less than the so-called lower limiting velocity c~ m. In turn, c~ m does not exceed the lowest velocity of 
a bulk wave propagating in the same direction. Henceforth, it is assumed that the following condition 
is satisfied 

¢ < 4 '= (1.5) 

This ensures that there are no real roots in Christoffel's equation. 

2. T H E  S I X - D I M E N S I O N A L  F O R M U L I S M  

Since it is not known in advance whether representation (0.1) is the only possible representation for a 
partial wave, we will consider the following (most general) representation for a harmonic wave with a 
plane wavefront and a non-uniform amplitude 

v( x")e irt''x-cO (2.1) 

where v(x") is a non-uniform, generally speaking, complex vector amplitude and x" = irv. x such that 
x" is a dimensionless (imaginary) coordinate in the direction which is defined by the vector v. The 
exponential factor in (2.1) corresponds to the motion of  a plane wavefront with a phase velocity c in 
the direction n. No apriori constraints of any kind are imposed on the smoothness of the vector amplitude 
v(x"). 

Substituting representation (2.1) into the equation of motion (1.1) we obtain the second-order matrix 
differential equation 

((v .C- ~)32x, + (v  .C .n  + n - C . v ) a x ,  + ( n - C . n  -pcal)v(x")=O (2.2) 

A direct analysis of Eq. (2.2) is rather complex. The situation can be simplified if we introduce the 
supplementary vector function 

w(x") = O;,,,v(x") (2.3) 

Then, since the tensor C is positive-definite, Eq. (2.2) reduces to the first-order matrix differential 
equations 

V 

x lwl =R6 I:) ,24, 
where 

U ° '11  oCn-oc2,, Re= - M  - N  ' N = ( v - C . v )  - I - ( v . C . n + n - C . v )  
(2.5) 

(M and N are real, third-order matrices). 
When the structure of the matrix 116 is taken into account, its six-dimensional eigenvectors can be 

conveniently represented in the form 
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The mapping F : C "6 ~ C 3 such that 

m 6 - ( m ;  m ' ) ,  m, m" ¢ C 3 

F(m6) = m (2.6) 

is subsequently required. 

Remark 2.1. Taking account of relations (2.4) and (2.5), the determinant of the matrix can be represented in the 
form 

det R e = (v. C. v) -i (n. C-n- pc21) (2.7) 

The right-hand side of this equality shows that, since the tensor C is positive-definite, the matrix R 6 is non-degenerate 
for any phase velocities with the exception of cases when pc 2 = ~(n- C" n) (k = I, 2, 3 and ~.k denotes a characteristic 
number of the corresponding matrix), that is, degeneracy sets in when the phase velocity c is identical with the 
velocity of one of the body waves which propagate in the direction of the vector n. It is Clear that the matrix R6 is 
non-degenerate in the case of subsonic Lamb waves. 

2.2. Since the matrix 116 is not symmetric, its right and left eigenvectors, generally speaking, are different. 
Henceforth, for brevity, the term "eigenvector" is to be understood as referring to the right eigenvectors of the 
matrix R 6. 

2.3. In its structure, the matrix R6 is similar to the matrix which is used to construct the "fundamental elasticity 
tensor". This tensor and the corresponding matrix were previously introduced in [12] and have been used to 
investigate Rayleigh waves in anisotropic elastic half-spaces (see [11, 13-15], for example). 

Theorem 2.1. 1. The set of roots of the characteristic polynomial of Christoffel's equation (I.4) is 
identical with the set of characteristic numbers of the matrix R6. 

2. The spectral space of Christoffel's equation (1.3) is identical with the surjection (2.6) of the spectral 
space of the matrix R6. 

Proof. Suppose ~/k is a root of the characteristic polynomial of Christoffel's equation (1.4) and mk is 
the corresponding eig,envector which satisfies condition (1.3). Substituting the functions v(x") = rake w~" 
and w(x") = ~/kmk evkx" corresponding to these ~k and mk into Eq. (2.4) we obtain 

(ml ('I 7k = R6" (2.8) 
7kink Ykm, 

Hence, each root of Christoffel's equation is also a characteristic number of the matrix R6 and the 
corresponding eigenvector of Christoffel's equation is identical with the vector F(m6). 

Now, suppose ~/k is a characteristic number and (ink; m~), m k m~, ~ C a is the corresponding eigenvector 
of the matrix 116, that is, 

// ~'k = R6" (2.9) 

Relation (2.9), together with (2.4) and (2.5), gives the equality 

(y~(v.C. v)+ yk(V.C.n+n.C, v)+(n.C.n-pc21).mk = 0  

which is identical with Eq. (1.3). 

By virtue of what has been said at the end of Section 1, we have the following corollary. 

Corollary. When condition (1.5) is satisfied, all the characteristic numbers of the matrix 1~ are complex 
and occur in its spectrum as complex conjugate pairs. . 
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3. A R E P R E S E N T A T I O N  FOR LAMB WAVES 

The structure of the general solution of the system of first-order differential equations (2.4) in C 6 is 
determined by the Jordan normal form of the matrix l~  [16]. By virtue of the corollary to Theorem 
2.1, only three types of Jordan normal forms of the matrix R6 are possible at subsonic phase velocities 
which, moreover, satisfy condition (1.5) 

J~;) =diag()',, )'2 . . . . .  )'6), jgn)=diag(Fi2, 1-22, 

0 )'j ' F3 = )') 1 ; j = l ,  2 

0 )'j 

73, 7,),  $~m)=diag(Fl a, Fa n) (3.1) 

Remark 3.1. In expressions (3.1), it is possible to put 

72/,-I = Y2k, k = 1, 2 . . . .  ( 3 . 2 )  

Equalities (3.2) are possible by virtue of the corollary and Theorem 2.1. Next, since the matrix R6 is real, relations, 
similar to (3.2), are also satisfied in the case of its eigenvectors 

(m2,-=;  m[t,_~ ) = (m2tc; m~l  ) (3 .3 )  

Proposition 3.1. When the matrix 116 is normal and similar (on C) to the Jordan matrix J~ I), the following 
condition is satisfied: either 7k = --i or m k • m k = 0 (mk is the complex spatial image in the case of the 
mapping F of the corresponding six-dimensional eigenvector of the matrix 116). 

Proof. Note that, under the conditions of Proposition 3.1, all of the eigenvectors of the matrix lks can be chosen 
to be orthogonal (this, generally speaking, is not so in the case of matrices which are similar to j~irj or j~m) (([17], 
Chapter VII, § 5)). 

S u p p o s e  (Ink; ! ~ ) ,  m k !~, E 6 ,3 is an eigenvector of the matrix 116 which corresponds to the characteristic number 
Yk. By virtue of relation (3.3), the condition for the eigenvectors (raZe-l; m~k-1) and 
(m2g; m~) to be orthogonal has the form 

m2k-I "m2k-I = -m2k-I" m2k-I (3.4) 

It is obvious that a similar relation also holds for vectors with even subscripts. Next, 

7kink =m~, Vk (3.5) 

follows from relation (2.9) when account is taken expression (2.4), which specifies the structure of the matrix 1~. 
Relations (3.4) and (3.5) give 

(I + 7k 2)m k .m k = 0 (3.6) 

which completes the proof. 

The transition from first-order system (2.4) to initial system (2.2), taking account of the results of 
the general theory of matrix differential equations ([16], Chapter 4), enables one to represent the 
corresponding general solutions (the matrix of the fundamental solutions) in the form 

6 
v~J~(x ") = T. Ckm~e ~kx" 

k=l 
2 4 

vt;I)(x") = Y" (C2k-J +C2kx")mk e~*x" + Y. C~.2mk evkx" (3.7) 
k=l k=3 

2 
¥( l l l ) (x t t )  ---- ~ (C3k_2.4- C3k_IXH.'F C3kx"2)m~e ~kx" 

k=l 

where Ck are complex coefficients to be determined. 

Remark 3.2. In the case of scalar differential equations, the unknown coefficients Ck are independent and are 
determined, as a rule, from the boundary conditions. In the case of matrix differential equations similar to (3.4), 
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these coefficients may be dependent ([16], Chapter 4) and the possible relations between them are determined by 
substituting the corresponding solution into the initial equation. 

Proposition 4.2. 1. In the representation for v (I), all the coefficients Ck are independent. 
2. In the representation for v (u), the coefficients C2 and (:?4 are zero. 
3. In the representation for v (m), the coefficients C2, C3 and Cs, C6 are equal to zero. 

Proof. Assertion 1 is obvious since the matrix R6 does not contain Jordan blocks. 
In order to prove assertion 2, we substitute the solution corresponding to one of the Jordan blocks (for example, 

the block containing T1) into (2.4). This gives 

(CIA + xC2A +C2B).mle ~llx" =0 

A =~/21+¥1N+M, B=2yII+N (3.8) 

The matrices M and N are defined by formulae (2.5). It follows from (3.8) that 

m I E k e r A  (3.9) 

and either C2 = 0 or the following condition is satisfied 

mt ~ ker B (3.10) 

We will now show that it is impossible to satisfy the last two relations in the case of complex ¥1. When account 
is taken of (2.5), condition (2.9) gives 

m~ .(2~lt(v.C.u)+(u.C.n+n.C.v)).ml =0 (3.11) 

However, when the fact that the tensor (v. C.v) is positive-definite is taken into account, condition (3.11) is 
incompatible with the condition Im(~q) # 0. 

In order to prove assertion 3 ° , we substitute the solution corresponding to the Jordan block containing 
~fi into Eq. (2.4). This gives 

((C I + xC 2 + x2C3 )A + (C 2 + 2xC s)B +2(731). ml e v : :  = 0 

Further analysis shows that condition (3.9) is satisfied and assertion 3 ° follows from this when account 
is taken of equality (3.11). 

By virtue of Proposition 3.2, the structure of a Lamb wave depends on the existence and rank of Jordan 
blocks in the Jordan normal form of the matrix R 6. Taking account of relations (3.7), we can write the 
representation for a Lamb wave in the form 

P Ckmkeir~tx.l, eir~n.x-ct), j~l) u(x) = ~ p = for (3.12) 

k=t for j~u) 

l ( I I )  l ( l I l )  
In (3.12), the arbitrary coefficients Ck, corresponding to "6 , and "6 , have now already been 
renumbered compared with the numbering in relations (3.7). 

4. T H E  D I S P E R S I O N  E Q U A T I O N  

It is assumed that the homogeneous boundary conditions in the stresses 

x .v  =+h: t-+_v-C..Vxu = 0  (4.1) 

are satisfied on the surfaces of a layer (2h is the layer thickness). 
Substituting the displacement field (3.12) into boundary conditions (4.1) and changing to the 

dimensionless coordinates x"  = ir(v" x) we obtain 
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P 
~'. Ckt~e ±rk~ = 0 

k=l 

t k = ( T ~ v ' C ' v + v - C . n ) - m  k, ~ = i r h  (4.2) 

(the pa ramete rp  is defined by the group of equalities in (3.12)). 
The boundary conditions in the form (4.2) can be treated as a non-trivial solution of system (4.2) 

with respect to the unknown coefficients Ck (k = 1 . . . . .  p);  the latter is equivalent to all of the complex 
determinants of  order  p vanishing: 

[ t~e+~""  tpe+~f P~ 0 
~p E det I (4.3) 

p It~e-~,~.. . tpe-~,~ = 

Equations (4.3) are the required dispersion relations which give, by mean of the preliminary solution 
of  differential equation (2.4), the link between the phase velocity c and the wave number r or the phase 
velocity and the angular frequency co = rc. 

The question of the solvability of Eqs. (4.3) in the case of arbitrary anisotropy was not investigated 
but the following assertions hold. 

Proposition 4.1. Suppose Re(Yk) = 0 for any k. Then, a Lamb wave with a phase velocity which satisfies 
condition (1.5) cannot just consist of the corresponding partial wave. 

Proof. Suppose the corresponding partial wave satisfies Eqs. (4.3). This is equivalent to the equality 

t~ = 0 ( 4 . 4 )  

On multiplying both sides of this equality by the vector ink, we obtain 

¥~u®~ k . . C . . m k o v + v ® ~  k . . C - . m k o n = 0  (4.5) 

It now remains to note that, when Im (Yk) ;~ 0, the imaginary part of the expression on the left-hand side of (4.5) 
also non-zero by virtue of the fact that the elasticity tensor is positive-definite. Hence, it is not possible for the 
left-hand side of this equality to be equal to zero. 

Proposition 4.2. Under  the conditions of Proposition 4.1, a Lamb wave cannot be formed by two 
partial waves corresponding to conjugate characteristic numbers (to roots of  the characteristic 
polynomial). 

Proof. Suppose a non-trivial solution of system (4.2) exists for any conjugate characteristic numbers, such as 'h 
and Y1, for example. In this case, we must putp = 2, and conditions (4.3) that the second order determinants should 
vanish reduce to two equations. The first equation can be represented in the form 

t; xit =0 (4.6) 

where Im ('/1) ;~ 0 by virtue of (1.5) so that Im (tl) ;~ 0. Equation (5.6) expresses the condition for the collinearity 
of the vectors t I and tl: 

t I = cte, i ;  = ~ e  ( 4 . 7 )  

where c~ is a certain non-zero complex constant and e E R 3. When account is taken of condition (4.7), we write 
the second equation following from (4.3) in the form 

I] e" g [ 
82 --- det I = 0 (4.8) 

2 ae-+~ 4 ~e-+P4 II 

i t  is clear that, when Im (YI) ++ 0 and c¢ ++ O, it is impossible for the left-hand side o f  equali ty (5.8) to 
vanish. 

(Ill) Corollary. Lamb waves corresponding to the normal Jordan form J6 do not exist under the conditions 
of Proposition 4.2. 
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5. LAYERS OF MATERIAL WITH CUBIC SYMMETRY 

It is shown below that the Jordan blocks (of rank 2) in the Jordan normal form of the matrix R6 occur 
even in layers made of materials with cubic symmetry when the middle plane coincides with a plane of 
elastic symmetry and the directions of propagation coincide with one of the crystallographic axes. 
Suppose the elasticity tensor of a crystal with cubic symmetry in the crystallographic axes specified by 
the vectors e k (k = 1, 2, 3) has the form 

C = rl~. ek ® ek ® ek ® ek + ~. ~. ek ® ek ® em ® em + 
k k~m 

+4g Y. sym(e k ®em)®sym(e ~ ®e m) (5.1) 
k<ra 

sym(e k ®era)= ~ (e  k ®era +em ®e k) 

(rl, k, IX) are the constants of elasticity). 
The condition of positive definiteness (1.2), which is imposed on the tensor C, gives 

r l-7~>0, ~+2~.>0,  g > 0  (5.2) 

Suppose the unit vectors v, the normals to the middle plane of the layer, and n, the directions of 
propagation of a Lamb wave, are orientated along the crystallographic axes of the crystal. Substituting 
the elasticity tensor (5.1) into the last two equalities of (2.5) are obtain 

v@v+ll-pC2n@n+g-pC2w®w , w = v x n  
g Ix 

N =( ~ ;P v ®n+ ~" +g (5.3) 

When account is taken of equalities (5.3), analysis of the structure of the matrix R6 leads to the conclusion 
that the following assertion holds. 

Proposition 5.1.1. The relation between the phase velocity, the density and the constants of elasticity 
of a cubic crystal 

pc 2. = 2 I ~. + g ] ~/~g(~ + ~)(~. + 2g - ~) - (1"1 + IX)(rl + ~.) (7~ + 2B - rl) (5.4) 
(11 _ g)2 (11 _ IX)2 

is necessary and sufficient of the occurrence of the Jordan normal form j~n). 
2. The characteristic numbers of the matrix R6, which correspond to (5.4) can be represented in the 

'form 

(5.5) 
~t/~t = 1 - pc2/g, ~ = 1 - pc2/rl 

where Y1 and Y2 correspond to Jordan blocks. 
3. The amplitudes n~, corresponding to the characteristic numbers'h, have the form (p is a normalizing 

factor) 

mj=p(iv~+n~), m2=~j, m 3 = m 4 = w  

(5.6) 

By substituting expressions (5.5) and (5.6) into dispersion equation (4.3) and taking account of equality 
(5.1) it can be shown that Eq. (4.3) is not satisfied by any values of the parameter ~. In fact, substitution 
of the amplitudes (5.6) into the dispersion equation leads, after some reduction, to two independent 
equations with (6 x 2)-matrices, which have already been encountered in the proof of Proposition (4.2). 



298 S.V. Kuznetsov 

We therefore obtain the following theorem on the existence of forbidden directions and velocities for 
Lamb waves. 

Theorem 5.1. Under the conditions of Proposition (5.1), Lamb waves, propagating in the direction 
of the crystallographic axis of a cubic crystal, do not exist. 

Remark 5.1. In the formulation of Theorem 5.1, we speak of the impossibility of the propagation of a Lamb 
wave at a completely defined value of the phase velocity which satisfies condition (5.4). At other values of the phase 
velocity, when condition (5.4) is violated, Lamb waves can perfectly well exist. 

From a practical point of view, it is interesting that the disappearance of Lamb waves at certain phase 
velocities is observed for all cubic crystals for which the components of the elasticity tensor satisfy the 
condition 

~, + 2p. > rl 

Actually, when this condition and the condition of positive definiteness (5.2) are satisfied, the phase 
velocity, defined according to (5.4), is positive and satisfies condition (1.5). 

A simple physical interpretation can be given of the disappearance of Lamb waves which propagate 
in the directions of elastic symmetry of cubic crystals if it is noted that, for fixed values of the constants 
of elasticity, density and values of the phase velocity which differ only slightly from those determined 
using (5.4), the Jordan normal form of the matrix R6 now does not contain Jordan blocks and a Lamb 
wave is formed by six partial waves. In this case, dispersion equation (4.3) splits into an equation 
containing a fourth-order determinant and an equation with a second-order determinant, which is 
analogous to Eq. (4.8). It has been established in Proposition 4.2 that this last equation does not have 
non-trivial solutions. A more detailed treatment of the first equation shows that it has non-trivial solutions 
everywhere except at the point Co, where the phase velocity satisfies condition (5.4). However, in the 
neighbourhood of this point when c ---) Co, the characteristic numbers of the matrix R6 and the 
corresponding amplitudes satisfy the conditions 

~3 ---))'l, Y4 ~ Y 2  

m 3  --~ l n l ,  ii!4 - - )  m I 

(5.7) 

Here, in accordance with the notation of (3.2), Y2 = 71 and Y4 = ~3, and similar equalities hold in the 
case of the amplitudes. At the same time, the corresponding root solutions of Eq. (4.2) when c ~ Co 
satisfy the conditions 

C3 - 0 -  G ,  C4 ~ -  G (5.8) 

By combining relations (5.7) and (5.8) it can be shown that, when c ---) Co, the partial waves, multiplied 
by the corresponding coefficients, are mutually annihilated, which also leads to the disappearance of 
the resulting Lamb wave. 
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